

Resolwe SDK for Python

Resolwe SDK for Python supports interaction with Genialis Server [https://app.genialis.com]. Genialis Server is based on Resolwe [https://github.com/genialis/resolwe] workflow engine
and its plugin Resolwe Bioinformatics [https://github.com/genialis/resolwe-bio]. You can use it to upload
and inspect biomedical data sets, contribute annotations and run
analysis.

Install

Install from PyPI:

pip install resdk

If you would like to contribute to the SDK code base, follow the
installation steps for developers.

Usage example

We will download a sample containing raw sequencing reads that were aligned to
a genome:

import resdk

Create a Resolwe object to interact with the server
res = resdk.Resolwe(url='https://app.genialis.com')

Enable verbose logging to standard output
resdk.start_logging()

Get sample meta-data from the server
sample = res.sample.get('resdk-example')

Download files associated with the sample
sample.download()

Multiple files (fastq, fastQC report, bam, bai…) have downloaded to the
working directory. Check them out. To learn more about the Resolwe SDK continue
with Tutorials.

If you have problems connecting to our server, please contact us at
info@genialis.com.

Documentation

	Getting started
	Installation

	Registration

	Connect to Genialis Server

	Query data

	Run alignment

	Tutorials
	Genialis Server basics

	Query, inspect and download data

	Create, modify and organize data

	Topical documentation
	Knowledge base

	ReSDK Tables

	Genesets

	Metadata

	SDK Reference
	Resolwe

	Resolwe Query

	Resources

	ReSDK Tables

	Exceptions

	Logging

	Contributing
	Installing prerequisites

	Preparing environment

	Running tests

	Coverage report

	Building documentation

	Preparing release

Getting started

This tutorial is for bioinformaticians. It will help you install the ReSDK and
explain some basic commands. We will connect to an instance of Genialis
server [https://app.genialis.com], do some basic queries, and align raw reads to a genome.

Installation

Installing is easy, just make sure you have Python [https://www.python.org/downloads/] and pip [https://pip.pypa.io/en/stable/installing/] installed on your
computer. Run this command in the terminal (CMD on Windows):

pip install resdk

Note

If you are using Apple silicon you should use Python version 3.10 or higher.

Registration

The examples presented here require access to a public Genialis Server [https://app.genialis.com]
that is configured for the examples in this tutorial. Some parts of the
documentation will work for registered users only. Please request a Demo [http://genial.is/Demo-Request]
on Genialis Server before you continue, and remember your username and
password.

Connect to Genialis Server

Start the Python interpreter by typing python into the command line. You’ll
recognize the interpreter by ‘>>>’. Now we can connect to the Genialis Server:

import resdk

Create a Resolwe object to interact with the server and login
res = resdk.Resolwe(url='https://app.genialis.com')
res.login()

Enable verbose logging to standard output
resdk.start_logging()

Note

If you omit the login() line you will be logged as anonymous user.
Note that anonymous users do not have access to the ful set of features.

The login() call will perform interactive login in a web browser. If you
wish to log in as a different user, open the link in an incognito window.

Note

When connecting to the server through an interactive session, we suggest you
use the resdk.start_logging() command. This allows you to see important
messages (e.g. warnings and errors) when executing commands.

Note

To avoid copy-pasting of the commands, you can
download all the code used in this section.

Query data

Before we start querying data on the server we should become familiar with what
a data object is. Everything that is uploaded or created (via processes) on a
server is a data object. The data object contains a complete record of the
processing that has occurred. It stores the inputs (files, arguments,
parameters…), the process (the algorithm) and the outputs (files, images,
numbers…). Let’s count all data objects on the server that we can access:

res.data.count()

This is all of the data on the server you have permissions for. As a new
user you can only see a small subset of all data objects. We can see the
data objects are referenced by id, slug, and name.

Note

id is the auto-generated unique identifier of an object. IDs are
integers.

slug is the unique name of an object. The slug is automatically
created from the name but can also be edited by the user. Only lowercase
letters, numbers and dashes are allowed (will not accept white space or
uppercase letters).

name is an arbitrary, non unique name of an object.

Let’s say we now want to find some genome indices. We don’t always know the id,
slug, or name by heart, but we can use filters [http://resdk.readthedocs.io/en/latest/ref.html#resdk.ResolweQuery] to find them. We will
first count all genome index data objects:

res.data.filter(type='data:index').count()

This is quite a lot of objects! We can filter even further:

res.data.filter(type="data:index:star", name__contains="Homo sapiens")

Note

For a complete list of filtering options use a “wrong” filtering
argument and you will receive an informative message with all options
listed. For example:

res.data.filter(foo="bar")

For future work we want to get the genome with a specific slug. We will get [http://resdk.readthedocs.io/en/latest/ref.html#resdk.ResolweQuery.get]
it and store a reference to it for later:

Get data object by slug
genome_index = res.data.get('resdk-example-genome-index')

We have now seen how to use filters to find and get what we want. Let’s
query and get a paired-end FASTQ data object:

All paired-end fastq objects
res.data.filter(type='data:reads:fastq:paired')

Get specific object by slug
reads = res.data.get('resdk-example-reads')

We now have genome and reads data objects. We can learn about an object
by calling certain object attributes. We can find out who created the object:

reads.contributor

and inspect the list of files it contains:

reads.files()

These and many other data object attributes/methods are described here [http://resdk.readthedocs.io/en/latest/ref.html#resdk.resources.Data].

Run alignment

A common analysis in bioinformatics is to align sequencing reads to a reference
genome. This is done by running a certain process. A process uses an
algorithm or a sequence of algorithms to turn given inputs into outputs. Here
we will only test the STAR alignment process, but many more processes are
available (see the Process catalog [http://resolwe-bio.readthedocs.io/en/latest/catalog.html]). This process automatically creates a
BAM alignment file and BAI index, along with some other files.

Let’s run STAR on our reads, using our genome:

bam = res.run(
 slug='alignment-star',
 input={
 'reads': reads.id,
 'genome': genome_index.id,
 },
)

This might seem like a complicated statement, but note that we only run a
process with specific slug and required inputs. The processing may take some
time. Note that we have stored the reference to the alignment object in a
bam variable. We can check the status [http://resdk.readthedocs.io/en/latest/ref.html#resdk.resources.Data.status] of the process to determine if
the processing has finished:

bam.status

Status OK indicates that processing has finished successfully. If the
status is not OK yet, run the bam.update() and bam.status commands
again in few minutes. We can inspect our newly created data object:

Get the latest info about the object from the server
bam.update()
bam.status

As with any other data object, it has its own id, slug, and name. We can
explore the process inputs and outputs:

Process inputs
bam.input

Process outputs
bam.output

Download the outputs to your local disk:

bam.download()

We have come to the end of Getting started. You now know some basic ReSDK
concepts and commands. Yet, we have only scratched the surface. By continuing
with the Tutorials, you will become familiar with more advanced features, and
will soon be able to perform powerful analyses on your data.

Tutorials

	Genialis Server basics
	Genialis Server and ReSDK

	Data and Process

	Samples and Collections

	Query, inspect and download data
	Login

	Query resources

	Inspect resources

	Download data

	Create, modify and organize data
	Organize resources

	Upload files

	Modify data

	Annotate Samples

	Run analyses

	Run workflows

	Solving problems

Genialis Server basics

This chapter provides a general overview and explains the basic concepts.
We highly recommend reading it even though it is a bit theoretic.

Genialis Server and ReSDK

Genialis Server [https://app.genialis.com] is a web application that can handle large quantities of
biological data, perform complex data analysis, organize results, and
automatically document your work in a reproducible fashion. It is based on
Resolwe [https://github.com/genialis/resolwe] and Resolwe Bioinformatics [https://github.com/genialis/resolwe-bio]. Resolwe is an open source dataflow
package for the Django framework [https://www.djangoproject.com] while Resolwe Bioinformatics is an
extension of Resolwe that provides bioinformatics pipelines.

Resolwe SDK for Python allows you to access Genialis Server through Python.
It supports accessing, modifying, uploading, downloading and organizing the
data.

[image: _images/resolwe_resdk.jpg]

Genialis Server runs on computers with strong computational capabilities. On
the contrary, resdk is a Python package on a local computer that interacts
with Genialis Server through a RESTful API. The power of resdk is its
lightweight character. It is installed with one simple command, but supports
manipulation of large data sets and heavy computation on a remote server.

Data and Process

The two most fundamental resources in Genialis Server are
Data and Process.

Process stores an algorithm that transforms inputs into outputs. It is a
blueprint for one step in the analysis.

Data is an instance of a Process. It is a complete record of the performed
processing. It remembers the inputs (files, arguments, parameters…), the
algorithm used and the outputs (files, images, numbers…). In addition, Data
objects store some useful meta data, making it easy to reproduce the dataflow
and access information.

Example use case: you have a file reads.fastq with NGS read sequences
and want to map them to the genome genome.fasta with aligner STAR.
Reads are one Data object and genome is another one. Alignment is done by
creating a third Data. At the creation, one always needs to define the Process
(STAR) and inputs (first and second Data). When the Data object is created,
the server automatically runs the given process with provided inputs and
computes all inputs, outputs, and meta data.

Samples and Collections

Eventually, you will have many Data objects and want to organize them. Genialis
server includes different structures to help you group Data objects:
Sample and
Collection.

Sample represents a biological entity. It includes user annotations and
Data objects associated with this biological entity. In practice, all Data
objects in the Sample are derived from an initial single Data object.
Typically, a Sample would contain the following Data: raw reads, preprocessed
reads, alignment (bam file), and expressions. A Data object can belong to only
one Sample. Two distinct Samples cannot contain the same Data object.

Collection is a group of Samples. In addition to Samples and their Data,
Collections may contain Data objects that store other analysis results. Example
of this are differential expressions - they are done as combination of many
Samples and cannot belong to only one Sample. Each Sample and Data object can
only be in one Collection.

[image: _images/data-hierarchy-diagram.png]

Relations between Data, Samples and Collection. Samples
are groups of Data objects originating from the same biological
sample: all Data objects in a Sample are derived from a single NGS
reads file. Collections are arbitrary groups of Samples
and Data objects that store analysis results.

When a new Data object that represents a biological sample (i.e. fastq files,
bam files) is uploaded, the unannotated Sample is automatically created. It is
the duty of the researcher to properly annotate the Sample. When a Data object
that belongs to an existing Sample is used as an input to trigger a new
analysis, the output of this process is automatically attached to an existing
Sample.

Query, inspect and download data

Login

By now, you should have an account on the Genialis Server [https://app.genialis.com]. If not, you can
request a Demo [http://genial.is/Demo-Request]. Let’s connect to the server by creating a
Resolwe object:

import resdk

Create a Resolwe object to interact with the server and login
res = resdk.Resolwe(url='https://app.genialis.com')
res.login()

Enable verbose logging to standard output
resdk.start_logging()

If you omit the login() you will be logged as anonymous user. Note that this
will strongly limit the things you can do.

Note

To avoid copy-pasting of the commands, you can
download all the code used in this section.

Query resources

As you have read in the Genialis Server basics section, there are various
resources: Data,
Sample,
Collection,
Process… each of which has a
corresponding entry-point on Resolwe object (in our case, this is the
res variable). For example, to count all Data or Sample objects:

res.data.count()
res.sample.count()

Note

	id is the autogenerated unique identifier of an object. IDs are
	integers.

slug is the unique name of an object. The slug is automatically
created from the name but can also be edited by the user, although
we do not recommend that. Only lowercase letters, numbers and dashes are
allowed (will not accept white space or uppercase letters).

name is an arbitrary, non unique name of an object.

In practice one typically wants to narrow down the amount of results. This can
be done with the filter(**fields) method. It
returns a list of objects under the conditions defined by **fields. For
example:

Get all Collection objects with "RNA-Seq" in their name
res.collection.filter(name__contains='RNA-Seq')

Get all Processes with category "Align"
res.process.filter(category='Align')

Note

For a complete list of processes, their categories and definitions, please
visit resolwe-bio docs [https://resolwe-bio.readthedocs.io/]

But the real power of the filter() method is in combining multiple
parameters:

Filter by using several fields:
from datetime import datetime

res.data.filter(
 status='OK',
 created__gt=datetime(2018, 10, 1),
 created__lt=datetime(2025, 11, 1),
 ordering='-modified',
 limit=3,
)

This will return data objects with OK status, created in October 2018, order
them by descending modified date and return first 3 objects. Quite powerful
isn’t it?

Note

For a complete list of filtering options use a “wrong” filtering argument
and you will receive an informative message with all options listed. For
example:

res.data.filter(foo="bar")

The get(**fields) method searches by the same
parameters as filter and returns a single object (filter returns a
list). If only one parameter is given, it will be interpreted as a unique
identifier id or slug, depending on if it is a number or string:

Get object by slug
res.sample.get('resdk-example')

Inspect resources

We have learned how to query the resources with get and filter. Now we
will look at how to access the information in these resources. All of the
resources share some common attributes like name, id, slug,
created, modified, contributor and permissions. You can access
them like any other Python class attributes:

Get a data object:
data = res.data.get('resdk-example-reads')

Object creator:
data.contributor
Date and time of object creation:
data.created
Name
data.name
List of permissions
data.permissions

Aside from these attributes, each resource class has some specific attributes
and methods. For example, some of the most used ones for Data resource:

data = res.data.get('resdk-example-reads')
data.status
data.process
data.started
data.finished
data.size

You can check list of methods defined for each of the resources in the
reference section. Note that some attributes and methods are
defined in the BaseResource and
BaseCollection classes.
BaseResource is the parent of all
resource classes in resdk.
BaseCollection is the parent
of all collection-like classes: Sample and
Collection

Quite commonly, one wants to inspect list of Data objects in Collection
or to know the Sample of a given Data… For such purposes, there are
some handy shortcuts:

	data.sample

	data.collection

	sample.data

	sample.collection

	collection.data

	collection.samples

Download data

Resource classes Data, Sample and
Collection have the methods files() and download().

The files() method returns a list of all files on the resource but does not
download anything.

Get data by slug
data = res.data.get('resdk-example-reads')

Print a list of files
data.files()

Filter the list of files by file name
data.files(file_name='reads.fastq.gz')

Filter the list of files by field name
data.files(field_name='output.fastq')

The method download() downloads the resource files. The optional parameters
file_name and field_name have the same effect as in the files
method. There is an additional parameter, download_dir, that allows you to
specify the download directory:

Get sample by slug
sample = res.sample.get('resdk-example')

Download the FASTQ reads file into current directory
sample.download(
 file_name='reads.fastq.gz',
 download_dir='./',
)

Create, modify and organize data

To begin, we need some sample data to work with. You may use your own reads
(.fastq) files, or download an example set we have provided:

import resdk

res = resdk.Resolwe(url='https://app.genialis.com')
res.login()

Get example reads
example = res.data.get('resdk-example-reads')
Download them to current working directory
example.download(
 field_name='fastq',
 download_dir='./',
)

Note

To avoid copy-pasting of the commands, you can
download all the code used in this section.

Organize resources

Before all else, one needs to prepare space for work. In our case, this
means creating a “container” where the produced data will reside. So
let’s create a collection and than put some data inside!

create a new collection object in your running instance of Resolwe (res)
test_collection = res.collection.create(name='Test collection')

Upload files

We will upload fastq single end reads with the upload-fastq-single [http://resolwe-bio.readthedocs.io/en/latest/catalog-definitions.html#process-upload-fastq-single] process.

Upload FASTQ reads
reads = res.run(
 slug='upload-fastq-single',
 input={
 'src': './reads.fastq.gz',
 },
 collection=test_collection,
)

What just happened? First, we chose a process to run, using its slug
upload-fastq-single. Each process requires some inputs—in this case there
is only one input with name src, which is the location of reads on our
computer. Uploading a fastq file creates a new Data on the server
containing uploaded reads. Additionally, we ensured that the new
Data is put inside test_collection.

The upload process also created a Sample object for the reads data to be
associated with. You can access it by:

reads.sample

Note

You can also upload your files by providing url. Just replace path to your
local files with the url. This comes handy when your files are large and/or
are stored on a remote server and you don’t want to download them to your
computer just to upload them to Resolwe server again…

Modify data

Both Data with reads and Sample are owned by you and you have
permissions to modify them. For example:

Change name
reads.name = 'My first data'
reads.save()

Note the save() part! Without this, the change is only applied locally (on
your computer). But calling save() also takes care that all changes are
applied on the server.

Note

Some fields cannot (and should not) be changed. For example, you cannot
modify created or contributor fields. You will get an error if you
try.

Annotate Samples

The next thing to do after uploading some data is to annotate samples this data
belongs to. This can be done by assigning a value to a predefined field on a
given sample. See the example below.

Each sample should be assigned a species. This is done by attaching the
general.species field on a sample and assigning it a value, e.g.
Homo sapiens.

reads.sample.set_annotation("general.species", "Homo sapiens")

Annotation Fields

You might be wondering why the example above requires general.species string
instead of e.g. just species. The answer to this are AnnotationFields.
These are predefined objects that are available to annotate samples. These
objects primarily have a name, but also other properties. Let’s examine some of
those:

Get the field by it's group and name:
field = res.annotation_field.get(group__name="general", name="species")
Same thing, but in shorter syntax
field = res.annotation_field.from_path("general.species")
Examine some of the field attributes
field.name
field.group
field.description

Note

Each field is uniquely defined by the combination of name and group.

If you wish to examine what fields are available, use a query

res.annotation_field.all()
You can also filter the results
res.annotation_field.filter(group__name="general")

You may be wondering whether you can create your own fields / groups. The answer
is no. Time has proven that keeping things organized requires the usage
of a selected set of predefined fields. If you absolutely feel that you need an
additional annotation field, let us know or use resources such as Metadata.

Annotation Values

As mentioned before, fields are only one part of the annotation. The other part
are annotation values, stored as a standalone resource AnnotationValues.
They connect the field with the actual value.

Get an AnnotationValue
ann_value = reads.sample.get_annotation("general.species")
The actual value
ann_value.value
The corresponding field
ann_value.field
The corresponding sample
ann_value.sample

As a shortcut, you can get all the AnnotationValues for a given sample by:

reads.sample.annotations

Helper methods

Sometimes it is convenient to represent the annotations with the dictionary,
where keys are field names and values are annotation values. You can get all
the annotation for a given sample in this format by calling:

reads.sample.get_annotations()

Multiple annotations stored in the dictionary can be assigned to sample by:

annotations = {
 "general.species": "Homo sapiens", "general.description": "Description"
}
reads.sample.set_annotations(annotations)

Annotation is deleted from the sample by setting its value to None when
calling set_annotation or set_annotations helper methods. To avoid
confirmation prompt, you can set force=True.

reads.sample.set_annotation("general.description", None, force=True)

Run analyses

Various bioinformatic processes are available to properly analyze sequencing
data. Many of these pipelines are available via Resolwe SDK, and are listed in
the Process catalog [http://resolwe-bio.readthedocs.io/en/latest/catalog.html] of the Resolwe Bioinformatics documentation [http://resolwe-bio.readthedocs.io].

After uploading reads file, the next step is to align reads to a genome. We
will use STAR aligner, which is wrapped in a process with slug
alignment-star. Inputs and outputs of this process are described in
STAR process catalog [https://resolwe-bio.readthedocs.io/en/latest/catalog-definitions.html#process-alignment-star]. We will define input files and the process will run
its algorithm that transforms inputs into outputs.

Get genome
genome_index = res.data.get('resdk-example-genome-index')

alignment = res.run(
 slug='alignment-star',
 input={
 'genome': genome_index,
 'reads': reads,
 },
)

Lets take a closer look to the code above. We defined the alignment process, by
its slug 'alignment-star'. For inputs we defined data objects reads
and genome. Reads object was created with ‘upload-fastq-single’
process, while genome data object was already on the server and we just
used its slug to identify it. The alignment-star processor will
automatically take the right files from data objects, specified in inputs and
create output files: bam alignment file, bai index and some more…

You probably noticed that we get the result almost instantly, while the
typical assembling process runs for hours. This is because
processing runs asynchronously, so the returned data object does not
have an OK status or outputs when returned.

Get the latest meta data from the server
alignment.update()

See the process progress
alignment.process_progress

Print the status of data
alignment.status

Status OK indicates that processing has finished successfully, but you will
also find other statuses. They are given with two-letter abbreviations. To
understand their meanings, check the
status reference. When processing is done,
all outputs are written to disk and you can inspect them:

See process output
alignment.output

Until now, we used run() method twice: to upload reads (yes, uploading
files is just a matter of using an upload process) and to run alignment. You
can check the full signature of the run() method.

Run workflows

Typical data analysis is often a sequence of processes. Raw data or initial
input is analysed by running a process on it that outputs some data. This data
is fed as input into another process that produces another set of outputs. This
output is then again fed into another process and so on. Sometimes, this
sequence is so commonly used that one wants to simplify it’s execution. This
can be done by using so called “workflow”. Workflows are special processes that
run a stack of processes. On the outside, they look exactly the same as a
normal process and have a process slug, inputs… For example, we
can run workflow “General RNA-seq pipeline” on our reads:

Run a workflow
res.run(
 slug='workflow-bbduk-star-featurecounts-qc',
 input={
 'reads': reads,
 'genome': res.data.get('resdk-example-genome-index'),
 'annotation': res.data.get('resdk-example-annotation'),
 'rrna_reference': res.data.get('resdk-example-rrna-index'),
 'globin_reference': res.data.get('resdk-example-globin-index'),
 }
)

Solving problems

Sometimes the data object will not have an “OK” status. In such case, it is
helpful to be able to check what went wrong (and where). The stdout() method on data objects can help—it returns the
standard output of the data object (as string). The output is long but
exceedingly useful for debugging. Also, you can inspect the info, warning and
error logs.

Update the data object to get the most recent info
alignment.update()

Print process' standard output
print(alignment.stdout())

Access process' execution information
alignment.process_info

Access process' execution warnings
alignment.process_warning

Access process' execution errors
alignment.process_error

Topical documentation

Here you can browse through topical documentation about various parts of ReSDK.

	Knowledge base

	ReSDK Tables

	Genesets

	Metadata

Knowledge base

Genialis Knowledge base (KB) is a collection of “features” (genes,
transcripts, …) and “mappings” between these features. It comes
very handy when performing various tasks with genomic features e.g.:

	find all aliases of gene BRCA2

	finding all genes of type protein_coding

	find all transcripts of gene FHIT

	converting gene_id to gene_symbol

	…

Feature

Feature object represents a genomic feature: a gene, a transcript, etc.
You can query Feature objects by feature endpoint, similarly like
Data, Sample or any other ReSDK resource:

feature = res.feature.get(feature_id="BRCA2")

To examine all attributes of a Feature, see the SDK Reference.
Here we will list a few most commonly used ones:

Get the feature:
feature = res.feature.get(feature_id="BRCA2")

Database where this feature is defined, e.g. ENSEMBL, UCSC, NCBI, ...
feature.source

Unique identifier of a feature
feature.feature_id

Feature species
feature.species

Feature type, e.g. gene, transcript, exon, ...
feature.type

Feature name
feature.name

List of feature aliases
feature.aliases

The real power is in the filter capabilities. Here are some examples:

Count number of Human "protein-conding" transcripts in ENSEMBL database
res.feature.filter(
 species="Homo sapiens",
 type="transcript",
 subtype="protein-coding",
 source="ENSEMBL",
).count()

Convert all gene IDs in a list ``gene_ids`` to gene symbols::
gene_ids = ["ENSG00000139618", "ENSG00000189283"]
genes = res.feature.filter(
 feature_id__in=gene_ids,
 type="gene",
 species="Homo sapiens",
)
mapping = {g.feature_id: g.name for g in genes}
gene_symbols = [mapping[gene_id] for gene_id in gene_ids]

Warning

It might look tempting to simplify the last example with:

gene_symbols = [g.name for g in genes]

Don’t do this. The order of entries in the genes can be arbitrary
and therefore cause that the resulting list gene_symbols is not
ordered in the same way as gene_ids.

Mapping

Mapping is a connection between two features. Features can be related
in various ways. The type of mapping is indicated by relation_type
attribute. It is one of the following options:

	crossdb: Two features from different sources (databases)
that describe same feature. Example: connection for gene BRCA2
between database “UniProtKB” and “UCSC”.

	ortholog: Two features from different species that
describe orthologous gene.

	transcript: Connection between gene and it’s transcripts.

	exon: Connection between gene / transcript and it’s exons.

Again, we will only list an example and then let your imagination
fly:

Find UniProtKB ID for gene with given ENSEMBL ID:
mapping = res.mapping.filter(
 source_id="ENSG00000189283",
 source_db="ENSEMBL",
 target_db="UniProtKB",
 source_species="Homo sapiens",
 target_species="Homo sapiens",
)
uniprot_id = mapping[0].target_id

ReSDK Tables

ReSDK tables are helper classes for aggregating collection data in
tabular format. Currently, we have four flavours:

	RNATables

	MethylationTables

	MATables

	VariantTables

RNATables

Imagine you are modelling gene expression data from a given collection.
Ideally, you would want all expression values organized in a table where
rows represents samples and columns represent genes. Class
RNATables gives you just that (and more).

We will present the functionality of RNATables through an
example. We will:

	Create an instance of RNATables and examine it’s attributes

	Fetch raw expressions and select TIS signature genes [https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-2100-3] with
sufficient coverage

	Normalize expression values (log-transform) and visualize samples in a
simple PCA plot

First, connect to a Resolwe server, pick a collection and create
and instance of RNATables:

import resdk
from resdk.tables import RNATables
res = resdk.Resolwe(url='https://app.genialis.com/')
res.login()
collection = res.collection.get("sum149-fresh-for-rename")
sum149 = RNATables(collection)

Object sum149 is an instance of RNATables and has many attributes. For a complete list see
the SDK Reference, here we list the most commonly used ones:

Expressions raw counts
sum149.rc

Expressions normalized counts
sum149.exp
See normalization method
sum149.exp.attrs["exp_type"]

Sample metadata
sum149.meta

Sample QC metrics
sum149.qc

Dictionary that maps gene ID's into gene symbols
sum149.readable_columns
This is handy to rename column names (gene ID's) to gene symbols
sum149.rc.rename(columns=sum149.readable_columns)

Note

Expressions and metadata are cached in memory as well as on disk. At
each time they are re-requested a check is made that local and server side
of data is synced. If so, cached data is used. Otherwise, new data
will be pulled from server.

In our example we will only work with a set of TIS signature genes [https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-2100-3]:

TIS_GENES = ["CD3D", "IDO1", "CIITA", "CD3E", "CCL5", "GZMK", "CD2", "HLA-DRA", "CXCL13", "IL2RG", "NKG7", "HLA-E", "CXCR6", "LAG3", "TAGAP", "CXCL10", "STAT1", "GZMB"]

We will identify low expressed genes and only keep the ones with average raw
expression above 20:

tis_rc = sum149.rc.rename(columns=sum149.readable_columns)[TIS_GENES]
mean = tis_rc.mean(axis=0)
high_expressed_genes = mean.loc[mean > 20].index

Now, lets select TPM normalized expressions and keep only highly
expressed tis genes. We also transform to log2(TPM + 1):

import numpy as np
tis_tpm = sum149.exp.rename(columns=sum149.readable_columns)[high_expressed_genes]
tis_tpm_log = np.log(tis_tpm + 1)

Finally, we perform PCA and visualize the results:

from sklearn.decomposition import PCA
pca = PCA(n_components=2, whiten=True)
Y = pca.fit_transform(tis_tpm_log)

import matplotlib.pyplot as plt
for ((x, y), sample_name) in zip(Y, tis_tpm.index):
 plt.plot(x, y, 'bo')
 plt.text(x, y, sample_name)
plt.xlabel(f"PC1 ({pca.explained_variance_ratio_[0]})")
plt.ylabel(f"PC2 ({pca.explained_variance_ratio_[1]})")
plt.show()

MethylationTables

Similar as RNATables provide access to raw counts and normalized
expression values of RNA data, MethylationTables allow for fast
access of beta and m-values of methylation data:

meth = resdk.tables.MethylationTables(<collection-with-methylation-data>)

Methylation beta-values
meth.beta

Methylation m-values
meth.mval

MATables

Similar as RNATables provide access to raw counts and normalized
expression values of RNA data, MATables allow for fast
access of expression values per probe of microarray:

ma = resdk.tables.MATables(<collection-with-microarray-data>)

Microarray expressions values (columns are probe ID's)
ma.exp

VariantTables

Similar as RNATables provide access to raw counts and normalized
expression values of RNA data, VariantTables allow for fast
access of variant data present in Data of type data:mutationstable:

vt = resdk.tables.VariantTables(<collection-with-variant-data>)
vt.variants

The output of the above would look something like this:

	sample_id

	chr1_123_C>T

	chr1_126_T>C

	101

	2

	NaN

	102

	0

	2

In rows, there are sample ID’s. In columns there are variants where each
variant is given as:
<chromosome>_<position>_<nucleotide-change>.
Values in table can be:

	0 (wild-type / no mutation)

	1 (heterozygous mutation),

	2 (homozygous mutation)

	NaN (QC filters are failing - mutation status is unreliable)

Inspecting depth

The reason for NaN values may be that the read depth on certain position
is too low for GATK to reliably call a variant. In such case, it is
worth inspecting the depth or depth per base:

Similar as above but one gets depth on particular variant / sample
vt.depth
One can also get depth for specific base
vt.depth_a
vt.depth_c
vt.depth_t
vt.depth_g

Filtering mutations

Process mutations-table on Genialis Platform accepts either mutations or
geneset input which specifies the genes of interest. It restricts the scope
of mutation search to just a few given genes.

However, it can happen that not all the samples have the same mutations or
geneset input. In such cases, it makes little sense to merge the information
about mutations from multiple samples. By default, VariantTables checks that
all Data is computed with same mutations / geneset input. If this is
not true, it will raise an error.

But if you provide additional argument geneset it will limit the
mutations to only those in the given geneset. An example:

Sample 101 has mutations input "FHIT, BRCA2"
Sample 102 has mutations input "BRCA2"

This would cause error, since the mutations inputs are not the same
vt = resdk.tables.VariantTables(<collection>)
vt.variants

This would limit the variants to just the ones in BRCA2 gene.
vt = resdk.tables.VariantTables(<collection>, geneset=["BRCA2"])
vt.variants

Genesets

Geneset is a special kind of Data resource. In addition to all of
the functionality of Data, it also has genes attribute and
support for set-like operations (intersection, union, etc…).

In the most common case, genesets exist somewhere on Resolwe
server and user just fetches them:

Get one geneset by slug
gs = res.geneset.get("my-slug")

Get all human genesets in a given collection:
genesets = res.geneset.filter(collection=<my-collection>, species="Homo sapiens"):

What one gets is an object (or list of them) of type Geneset. This
object has all the attributes of Data plus some additional ones:

Set of genes in the geneset:
gs.genes
Source of genes, e.g. ENSEMBL, UCSC, NCBI...
gs.source
Species of the genes in the geneset
gs.species

A common thing to do with Geneset objects is to perform set-like
operations on them to create new Geneset. This is easily done with
exactly the same syntax as for Python set objects:

gs1 = res.geneset.get("slug-1")
gs2 = res.geneset.get("slug-2")

Union
gs3 = gs1 | gs2
Intersection
gs3 = gs1 & gs2
Difference
gs3 = gs1 - gs2

Note

Performing these operations is only possible on genesets that have equal values
of species and source attribute. Otherwise newly created sets would not
make sense and would be inconsistent.

So far, geneset gs3 only exists locally. One can easily save it to Resolwe server:

gs3.save()
As with Data, it is a good practice to include it in a collection:
gs3.collection = <my_collection>
gs.save()

Alternative way of creating genesets is to use
Resolwe.geneset.create method. In such case, you need to enter the
genes, species and source information manually:

res.geneset.create(genes=["MYC", "FHT"], source="UCSC", species="Homo sapiens")

Metadata

Samples are normally annotated with the use of AnnotationFields and
AnnotationValues. However in some cases the available
AnnotationFields do not suffice and it comes handy to upload sample
annotations in a table where each row holds information about some
sample in collection. In general, there can be multiple rows referring
to the same sample in the collection (for example one sample received
two or more distinct treatments). In such cases one can upload this
tables with the process Metadata table [https://resolwe-bio.readthedocs.io/en/latest/catalog-definitions.html#process-upload-metadata]. However, quite often there is
exactly one-on-one mapping between rows in such table and samples in
collection. In such case, please use the “unique” flavour of the above
process, Metadata table (one-to-one) [https://resolwe-bio.readthedocs.io/en/latest/catalog-definitions.html#process-upload-metadata-unique].

Metadata in ReSDK is just a special kind of Data resource that
simplifies retrieval of the above mentioned tables. In addition to all
of the functionality of Data, it also has two additional attributes:
df and unique:

The "df" attribute is pandas.DataFrame of the output named "table"
The index of df are sample ID's
m.df
Attribute "unique" is signalling if this is metadata is unique or not
m.unique

Note

Behind the scenes, df is not an attribute but rather a property.
So it has getter and setter methods (get_df and set_df).
This comes handy if the default parsing logic does not suffice. In
such cases you can provide your own parser and keyword arguments for
it. Example:

import pandas
m.get_df(parser=pandas.read_csv, sep="\t", skiprows=[1, 2, 3])

In the most common case, Metadata objects exist somewhere on Resolwe
server and user just fetches them:

Get one metadata by slug
m = res.metadata.get("my-slug")

Filter metadata by some conditions, e.g. get all metadata
from a given collection:
ms = res.metadata.filter(collection=<my-collection>):

Sometimes, these objects need to be updated, and one can easily do that.
However, df and unique are upload protected - they can be set
during object creation but cannot be set afterwards:

m.unique = False # Will fail on already existing object
m.df = <new-df> # Will fail on already existing object

Sometimes one wishes to create a new Metadata. This can be achieved in
the same manner as for other ReSDK resources:

m = res.metadata.create(df=<my-df>, collection=<my-collection>)

Creating metadata without specifying df / collection will fail
m = res.metdata.create() # Fail
m = res.metdata.create(collection=<my-collection>) # Fail
m = res.metdata.create(df=<my-df>) # Fail

Alternatively, one can also build this object gradually from scratch and
than call save():

m = Metadata(resolwe=<resolwe>)
m.collection = <my-collection>
my_df = m.set_index(<my-df>)
m.df = my_df
m.save()

where m.set_index(<my-df>) is a helper function that finds Sample name/slug/ID
column or index name, maps it to Sample ID and sets it as index.
This function is recommended to use because the validation step is trying to
match m.df index with m.collection sample ID’s.

Deleting Metadata works the same as for any other resource. Be careful,
this cannot be undone and you need to have sufficient permissions:

m.delete()

SDK Reference

Resolwe

	
class resdk.Resolwe(username=None, password=None, url=None)

	Connect to a Resolwe server.

	Parameters

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – user’s email

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – user’s password

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resolwe server instance

	
data_usage(**query_params)

	Get per-user data usage information.

Display number of samples, data objects and sum of data object
sizes for currently logged-in user. For admin users, display
data for all users.

	
get_or_run(slug=None, input={})

	Return existing object if found, otherwise create new one.

	Parameters

	
	slug (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process slug (human readable unique identifier)

	input (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Input values

	
get_query_by_resource(resource)

	Get ResolweQuery for a given resource.

	
login(username=None, password=None)

	Interactive login.

If only username is given prompt the user for password via shell.
If username is not given, prompt for interactive login.

	
run(slug=None, input={}, descriptor=None, descriptor_schema=None, collection=None, data_name='', process_resources=None)

	Run process and return the corresponding Data object.

	Upload files referenced in inputs

	Create Data object with given inputs

	Command is run that processes inputs into outputs

	Return Data object

The processing runs asynchronously, so the returned Data
object does not have an OK status or outputs when returned.
Use data.update() to refresh the Data resource object.

	Parameters

	
	slug (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process slug (human readable unique identifier)

	input (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Input values

	descriptor (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Descriptor values

	descriptor_schema (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid descriptor schema slug

	collection (int/resource) – Collection resource or it’s id
into which data object should be included

	data_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default name of data object

	process_resources (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Process resources

	Returns

	data object that was just created

	Return type

	Data object

	
version_check()

	Check that the server is compatible with the client.

Resolwe Query

	
class resdk.ResolweQuery(resolwe, resource, slug_field='slug')

	Query resource endpoints.

A Resolwe instance (for example “res”) has several endpoints:

	res.data

	res.collection

	res.sample

	res.process

	…

Each such endpoint is an instance of the ResolweQuery class. ResolweQuery
supports queries on corresponding objects, for example:

res.data.get(42) # return Data object with ID 42.
res.sample.filter(contributor=1) # return all samples made by contributor 1

This object is lazy loaded which means that actual request is made only
when needed. This enables composing multiple filters, for example:

res.data.filter(contributor=1).filter(name='My object')

is the same as:

res.data.filter(contributor=1, name='My object')

This is especially useful, because all endpoints at Resolwe instance
are such queries and can be filtered further before transferring
any data.

To get a list of all supported query parameters, use one that does
not exist and you will et a helpful error message with a list of
allowed ones.

res.data.filter(foo="bar")

	
all()

	Return copy of the current queryset.

This is handy function to get newly created query without any
filters.

	
clear_cache()

	Clear cache.

	
count()

	Return number of objects in current query.

	
create(**model_data)

	Return new instance of current resource.

	
delete(force=False)

	Delete objects in current query.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
filter(**filters)

	Return clone of current query with added given filters.

	
get(*args, **kwargs)

	Get object that matches given parameters.

If only one non-keyworded argument is given, it is considered
as id if it is number and as slug otherwise.

	Parameters

	uid (int for ID or string for slug) – unique identifier - ID or slug

	Return type

	object [https://docs.python.org/3/library/functions.html#object] of type self.resource

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if non-keyworded and keyworded arguments
are combined or if more than one non-keyworded argument is
given

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – if none or more than one objects are
returned

	
iterate(chunk_size=100, show_progress=False)

	Iterate through query.

This can come handy when one wishes to iterate through hundreds or
thousands of objects and would otherwise get “504 Gateway-timeout”.

The method cannot be used together with the following filters:
limit, offset and ordering, and will raise a ValueError.

	
search(text)

	Full text search.

Resources

Resource classes

	
class resdk.resources.base.BaseResource(resolwe, **model_data)

	Abstract resource.

One and only one of the identifiers (slug, id or model_data)
should be given.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
save()

	Save resource to the server.

	
update()

	Update resource fields from the server.

	
class resdk.resources.base.BaseResolweResource(resolwe, **model_data)

	Base class for Resolwe resources.

One and only one of the identifiers (slug, id or model_data)
should be given.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
property modified

	Modification time.

	
name

	name of resource

	
property permissions

	Permissions.

	
save()

	Save resource to the server.

	
slug

	human-readable unique identifier

	
update()

	Clear permissions cache and update the object.

	
version

	resource version

	
class resdk.resources.Data(resolwe, **model_data)

	Resolwe Data resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
checksum

	checksum field calculated on inputs

	
property children

	Get children of this Data object.

	
property collection

	Get collection.

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
descriptor

	annotation data, with the form defined in descriptor_schema

	
descriptor_dirty

	indicate whether descriptor doesn’t match descriptor_schema (is dirty)

	
property descriptor_schema

	Get descriptor schema.

	
download(file_name=None, field_name=None, download_dir=None)

	Download Data object’s files and directories.

Download files and directoriesfrom the Resolwe server to the
download directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file or directory

	field_name (string) – file or directory field name

	download_dir (string) – download path

	Return type

	None

Data objects can contain multiple files and directories. All are
downloaded by default, but may be filtered by name or output
field:

	re.data.get(42).download(file_name=’alignment7.bam’)

	re.data.get(42).download(field_name=’bam’)

	
duplicate()

	Duplicate (make copy of) data object.

	Returns

	Duplicated data object

	
duplicated

	duplicated

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Get list of downloadable file fields.

Filter files by file name or output field.

	Parameters

	
	file_name (string) – name of file

	field_name (string) – output field name

	Return type

	List of tuples (data_id, file_name, field_name, process_type)

	
property finished

	Get finish time.

	
id

	unique identifier of an object

	
input

	actual input values

	
property modified

	Modification time.

	
name

	name of resource

	
output

	actual output values

	
property parents

	Get parents of this Data object.

	
property permissions

	Permissions.

	
property process

	Get process.

	
process_cores

	process cores

	
process_error

	error log message (list of strings)

	
process_info

	info log message (list of strings)

	
process_memory

	process memory

	
process_progress

	process progress in percentage

	
process_rc

	Process algorithm return code

	
process_resources

	process_resources

	
process_warning

	warning log message (list of strings)

	
property sample

	Get sample.

	
save()

	Save resource to the server.

	
scheduled

	scheduled

	
size

	size

	
slug

	human-readable unique identifier

	
property started

	Get start time.

	
status

	process status - Possible values:
UP (Uploading - for upload processes),
RE (Resolving - computing input data objects)
WT (Waiting - waiting for process since the queue is full)
PP (Preparing - preparing the environment for processing)
PR (Processing)
OK (Done)
ER (Error)
DR (Dirty - Data is dirty)

	
stdout()

	Return process standard output (stdout.txt file content).

Fetch stdout.txt file from the corresponding Data object and return the
file content as string. The string can be long and ugly.

	Return type

	string

	
tags

	data object’s tags

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.collection.BaseCollection(resolwe, **model_data)

	Abstract collection resource.

One and only one of the identifiers (slug, id or model_data)
should be given.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
property data

	Return list of attached Data objects.

	
data_types()

	Return a list of data types (process_type).

	Return type

	List

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	description

	
descriptor

	descriptor

	
descriptor_dirty

	descriptor_dirty

	
property descriptor_schema

	Descriptor schema.

	
download(file_name=None, field_name=None, download_dir=None)

	Download output files of associated Data objects.

Download files from the Resolwe server to the download
directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file

	field_name (string) – field name

	download_dir (string) – download path

	Return type

	None

Collections can contain multiple Data objects and Data objects
can contain multiple files. All files are downloaded by default,
but may be filtered by file name or Data object type:

	re.collection.get(42).download(file_name=’alignment7.bam’)

	re.collection.get(42).download(data_type=’bam’)

	
duplicated

	duplicatied

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Return list of files in resource.

	
id

	unique identifier of an object

	
property modified

	Modification time.

	
name

	name of resource

	
property permissions

	Permissions.

	
save()

	Save resource to the server.

	
settings

	settings

	
slug

	human-readable unique identifier

	
tags

	tags

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.Collection(resolwe, **model_data)

	Resolwe Collection resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
assign_to_billing_account(billing_account_name)

	Assign given collection to a billing account.

	
property contributor

	Contributor.

	
create_background_relation(category, background, cases)

	Create background relation.

	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – Category of relation

	background (Sample) – Background sample

	cases (Sample) – Case samples (signals)

	
create_compare_relation(category, samples, labels=[])

	Create compare relation.

	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – Category of relation (i.e.
case-control, …)

	samples (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of samples to include in relation.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of labels assigned to corresponding
samples. If given it should be of same length as samples.

	
create_group_relation(category, samples, labels=[])

	Create group relation.

	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – Category of relation (i.e. replicates,
clones, …)

	samples (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of samples to include in relation.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of labels assigned to corresponding
samples. If given it should be of same length as samples.

	
create_series_relation(category, samples, positions=[], labels=[])

	Create series relation.

	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – Category of relation (i.e.
case-control, …)

	samples (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of samples to include in relation.

	positions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of positions assigned to
corresponding sample (i.e. 10, 20, 30). If given
it should be of same length as samples. Note that this
elements should be machine-sortable by default.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of labels assigned to corresponding
samples. If given it should be of same length as samples.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
property data

	Return list of data objects on collection.

	
data_types()

	Return a list of data types (process_type).

	Return type

	List

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	description

	
descriptor

	descriptor

	
descriptor_dirty

	descriptor_dirty

	
property descriptor_schema

	Descriptor schema.

	
download(file_name=None, field_name=None, download_dir=None)

	Download output files of associated Data objects.

Download files from the Resolwe server to the download
directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file

	field_name (string) – field name

	download_dir (string) – download path

	Return type

	None

Collections can contain multiple Data objects and Data objects
can contain multiple files. All files are downloaded by default,
but may be filtered by file name or Data object type:

	re.collection.get(42).download(file_name=’alignment7.bam’)

	re.collection.get(42).download(data_type=’bam’)

	
duplicate()

	Duplicate (make copy of) collection object.

	Returns

	Duplicated collection

	
duplicated

	duplicatied

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Return list of files in resource.

	
id

	unique identifier of an object

	
property modified

	Modification time.

	
name

	name of resource

	
property permissions

	Permissions.

	
property relations

	Return list of data objects on collection.

	
property samples

	Return list of samples on collection.

	
save()

	Save resource to the server.

	
settings

	settings

	
slug

	human-readable unique identifier

	
tags

	tags

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.Sample(resolwe, **model_data)

	Resolwe Sample resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
property annotations

	Get the annotations for the given sample.

	
property background

	Get background sample of the current one.

	
property collection

	Get collection.

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
property data

	Get data.

	
data_types()

	Return a list of data types (process_type).

	Return type

	List

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	description

	
descriptor

	descriptor

	
descriptor_dirty

	descriptor_dirty

	
property descriptor_schema

	Descriptor schema.

	
download(file_name=None, field_name=None, download_dir=None)

	Download output files of associated Data objects.

Download files from the Resolwe server to the download
directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file

	field_name (string) – field name

	download_dir (string) – download path

	Return type

	None

Collections can contain multiple Data objects and Data objects
can contain multiple files. All files are downloaded by default,
but may be filtered by file name or Data object type:

	re.collection.get(42).download(file_name=’alignment7.bam’)

	re.collection.get(42).download(data_type=’bam’)

	
duplicate()

	Duplicate (make copy of) sample object.

	Returns

	Duplicated sample

	
duplicated

	duplicatied

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Return list of files in resource.

	
get_annotation(full_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → AnnotationValue

	Get the AnnotationValue from full path.

	Raises

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – when field at the specified path does not exist.

	
get_annotations() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Get all annotations for the given sample in a dictionary.

	
get_bam()

	Return bam object on the sample.

	
get_cuffquant()

	Get cuffquant.

	
get_expression()

	Get expression.

	
get_macs()

	Return list of bed objects on the sample.

	
get_primary_bam(fallback_to_bam=False)

	Return primary bam object on the sample.

If the primary bam object is not present and
fallback_to_bam is set to True, a bam object will
be returned.

	
get_reads(**filters)

	Return the latest fastq object in sample.

If there are multiple fastq objects in sample (trimmed,
filtered, subsampled…), return the latest one. If any other of
the fastq objects is required, one can provide additional
filter arguments and limits search to one result.

	
id

	unique identifier of an object

	
property is_background

	Return True if given sample is background to any other and False otherwise.

	
property modified

	Modification time.

	
name

	name of resource

	
property permissions

	Permissions.

	
property relations

	Get Relation objects for this sample.

	
save()

	Save resource to the server.

	
set_annotation(full_path: str [https://docs.python.org/3/library/stdtypes.html#str], value, force=False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AnnotationValue]

	Create/update annotation value.

If value is None the annotation is deleted and None is returned. If force is
set to True no explicit confirmation is required to delete the annotation.

	
set_annotations(annotations: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bulk set annotations on the sample.

	
settings

	settings

	
slug

	human-readable unique identifier

	
tags

	tags

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.Relation(resolwe, **model_data)

	Resolwe Relation resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
add_sample(sample, label=None, position=None)

	Add sample object to relation.

	
category

	category of the relation

	
property collection

	Return collection object to which relation belongs.

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
descriptor

	annotation data, with the form defined in descriptor_schema

	
descriptor_dirty

	indicate whether descriptor doesn’t match descriptor_schema (is dirty)

	
property descriptor_schema

	Get descriptor schema.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
property modified

	Modification time.

	
name

	name of resource

	
partitions

	list of RelationPartition objects in the Relation

	
property permissions

	Permissions.

	
remove_samples(*samples)

	Remove sample objects from relation.

	
property samples

	Return list of sample objects in the relation.

	
save()

	Check that collection is saved and save instance.

	
slug

	human-readable unique identifier

	
type

	type of the relation

	
unit(where applicable, e.g. for serieses)

	unit (where applicable, e.g. for serieses)

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.Process(resolwe, **model_data)

	Resolwe Process resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
category

	used to group processes in a GUI. Examples: upload:, analyses:variants:, …

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
data_name

	the default name of data object using this process. When data object
is created you can assign a name to it. But if you don’t, the name of
data object is determined from this field. The field is a expression
which can take values of other fields.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	process description

	
entity_always_create

	entity_always_create

	
entity_descriptor_schema

	entity_descriptor_schema

	
entity_input

	entity_input

	
entity_type

	entity_type

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
input_schema

	specifications of inputs

	
is_active

	Boolean stating wether process is active

	
property modified

	Modification time.

	
name

	name of resource

	
output_schema

	specification of outputs

	
property permissions

	Permissions.

	
persistence

	Measure of how important is to keep the process outputs when
optimizing disk usage. Options: RAW/CACHED/TEMP. For processes, used
on frontend use TEMP - the results of this processes can be quickly
re-calculated any time. For upload processes use RAW - this data
should never be deleted, since it cannot be re-calculated. For
analysis use CACHED - the results can stil be calculated from
imported data but it can take time.

	
print_inputs()

	Pretty print input_schema.

	
priority

	process priority - not used yet

	
requirements

	required Docker image, amount of memory / CPU …

	
run

	the heart of process - here the algorithm is defined.

	
save()

	Save resource to the server.

	
scheduling_class

	Scheduling class

	
slug

	human-readable unique identifier

	
type

	the type of process "type:sub_type:sub_sub_type:..."

	
update()

	Clear permissions cache and update the object.

	
version

	resource version

	
class resdk.resources.DescriptorSchema(resolwe, **model_data)

	Resolwe DescriptorSchema resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	description

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
property modified

	Modification time.

	
name

	name of resource

	
property permissions

	Permissions.

	
save()

	Save resource to the server.

	
schema

	schema

	
slug

	human-readable unique identifier

	
update()

	Clear permissions cache and update the object.

	
version

	resource version

	
class resdk.resources.AnnotationValue(resolwe: Resolwe, **model_data)

	Resolwe AnnotationValue resource.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
property field: AnnotationField

	Get annotation field.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
property sample

	Get sample.

	
sample_id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	sample

	
save()

	Save resource to the server.

	
update()

	Update resource fields from the server.

	
class resdk.resources.AnnotationGroup(resolwe: Resolwe, **model_data)

	Resolwe AnnotationGroup resource.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
save()

	Save resource to the server.

	
update()

	Update resource fields from the server.

	
class resdk.resources.AnnotationField(resolwe: Resolwe, **model_data)

	Resolwe AnnotationField resource.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
property group: AnnotationGroup

	Get annotation group.

	
id

	unique identifier of an object

	
save()

	Save resource to the server.

	
update()

	Update resource fields from the server.

	
class resdk.resources.User(resolwe=None, **model_data)

	Resolwe User resource.

One and only one of the identifiers (slug, id or model_data)
should be given.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
first_name

	user’s first name

	
get_name()

	Return user’s name.

	
id

	unique identifier of an object

	
save()

	Save resource to the server.

	
update()

	Update resource fields from the server.

	
class resdk.resources.Group(resolwe=None, **model_data)

	Resolwe Group resource.

One and only one of the identifiers (slug, id or model_data)
should be given.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
add_users(*users)

	Add users to group.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
name

	group’s name

	
remove_users(*users)

	Remove users from group.

	
save()

	Save resource to the server.

	
update()

	Clear cache and update resource fields from the server.

	
property users

	Return list of users in group.

	
class resdk.resources.Geneset(resolwe, genes=None, source=None, species=None, **model_data)

	Resolwe Geneset resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
checksum

	checksum field calculated on inputs

	
property children

	Get children of this Data object.

	
property collection

	Get collection.

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
descriptor

	annotation data, with the form defined in descriptor_schema

	
descriptor_dirty

	indicate whether descriptor doesn’t match descriptor_schema (is dirty)

	
property descriptor_schema

	Get descriptor schema.

	
download(file_name=None, field_name=None, download_dir=None)

	Download Data object’s files and directories.

Download files and directoriesfrom the Resolwe server to the
download directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file or directory

	field_name (string) – file or directory field name

	download_dir (string) – download path

	Return type

	None

Data objects can contain multiple files and directories. All are
downloaded by default, but may be filtered by name or output
field:

	re.data.get(42).download(file_name=’alignment7.bam’)

	re.data.get(42).download(field_name=’bam’)

	
duplicate()

	Duplicate (make copy of) data object.

	Returns

	Duplicated data object

	
duplicated

	duplicated

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Get list of downloadable file fields.

Filter files by file name or output field.

	Parameters

	
	file_name (string) – name of file

	field_name (string) – output field name

	Return type

	List of tuples (data_id, file_name, field_name, process_type)

	
property finished

	Get finish time.

	
property genes

	Get genes.

	
id

	unique identifier of an object

	
input

	actual input values

	
property modified

	Modification time.

	
name

	name of resource

	
output

	actual output values

	
property parents

	Get parents of this Data object.

	
property permissions

	Permissions.

	
property process

	Get process.

	
process_cores

	process cores

	
process_error

	error log message (list of strings)

	
process_info

	info log message (list of strings)

	
process_memory

	process memory

	
process_progress

	process progress in percentage

	
process_rc

	Process algorithm return code

	
process_resources

	process_resources

	
process_warning

	warning log message (list of strings)

	
property sample

	Get sample.

	
save()

	Save Geneset to the server.

If Geneset is already on the server update with save() from base class. Otherwise, create
a new Geneset by running process with slug “create-geneset”.

	
scheduled

	scheduled

	
set_operator(operator, other)

	Perform set operations on Geneset object by creating a new Genseset.

	Parameters

	
	operator – string -> set operation function name

	other – Geneset object

	Returns

	new Geneset object

	
size

	size

	
slug

	human-readable unique identifier

	
property source

	Get source.

	
property species

	Get species.

	
property started

	Get start time.

	
status

	process status - Possible values:
UP (Uploading - for upload processes),
RE (Resolving - computing input data objects)
WT (Waiting - waiting for process since the queue is full)
PP (Preparing - preparing the environment for processing)
PR (Processing)
OK (Done)
ER (Error)
DR (Dirty - Data is dirty)

	
stdout()

	Return process standard output (stdout.txt file content).

Fetch stdout.txt file from the corresponding Data object and return the
file content as string. The string can be long and ugly.

	Return type

	string

	
tags

	data object’s tags

	
update()

	Clear cache and update resource fields from the server.

	
version

	resource version

	
class resdk.resources.Metadata(resolwe, **model_data)

	Metadata resource.

	Parameters

	
	resolwe (Resolwe object) – Resolwe instance

	model_data – Resource model data

	
checksum

	checksum field calculated on inputs

	
property children

	Get children of this Data object.

	
property collection

	Get collection.

	
property contributor

	Contributor.

	
property created

	Creation time.

	
current_user_permissions

	current user permissions

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
descriptor

	annotation data, with the form defined in descriptor_schema

	
descriptor_dirty

	indicate whether descriptor doesn’t match descriptor_schema (is dirty)

	
property descriptor_schema

	Get descriptor schema.

	
property df

	Get table as pd.DataFrame.

	
property df_bytes

	Get file contents of table output in bytes form.

	
download(file_name=None, field_name=None, download_dir=None)

	Download Data object’s files and directories.

Download files and directoriesfrom the Resolwe server to the
download directory (defaults to the current working directory).

	Parameters

	
	file_name (string) – name of file or directory

	field_name (string) – file or directory field name

	download_dir (string) – download path

	Return type

	None

Data objects can contain multiple files and directories. All are
downloaded by default, but may be filtered by name or output
field:

	re.data.get(42).download(file_name=’alignment7.bam’)

	re.data.get(42).download(field_name=’bam’)

	
duplicate()

	Duplicate (make copy of) data object.

	Returns

	Duplicated data object

	
duplicated

	duplicated

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
files(file_name=None, field_name=None)

	Get list of downloadable file fields.

Filter files by file name or output field.

	Parameters

	
	file_name (string) – name of file

	field_name (string) – output field name

	Return type

	List of tuples (data_id, file_name, field_name, process_type)

	
property finished

	Get finish time.

	
get_df(parser=None, **kwargs)

	Get table as pd.DataFrame.

	
id

	unique identifier of an object

	
input

	actual input values

	
property modified

	Modification time.

	
name

	name of resource

	
output

	actual output values

	
property parents

	Get parents of this Data object.

	
property permissions

	Permissions.

	
property process

	Get process.

	
process_cores

	process cores

	
process_error

	error log message (list of strings)

	
process_info

	info log message (list of strings)

	
process_memory

	process memory

	
process_progress

	process progress in percentage

	
process_rc

	Process algorithm return code

	
process_resources

	process_resources

	
process_warning

	warning log message (list of strings)

	
property sample

	Get sample.

	
save()

	Save Metadata to the server.

If Metadata is already uploaded: update. Otherwise, create new one.

	
scheduled

	scheduled

	
set_df(value)

	Set df.

	
set_index(df)

	Set index of df to Sample ID.

If there is a column with Sample ID just set that as index. If there is
Sample name or Sample slug column, map sample name / slug to sample ID’s
and set ID’s as an index. If no suitable column in there, raise an error.
Works also if any of the above options is already an index with appropriate name.

	
size

	size

	
slug

	human-readable unique identifier

	
property started

	Get start time.

	
status

	process status - Possible values:
UP (Uploading - for upload processes),
RE (Resolving - computing input data objects)
WT (Waiting - waiting for process since the queue is full)
PP (Preparing - preparing the environment for processing)
PR (Processing)
OK (Done)
ER (Error)
DR (Dirty - Data is dirty)

	
stdout()

	Return process standard output (stdout.txt file content).

Fetch stdout.txt file from the corresponding Data object and return the
file content as string. The string can be long and ugly.

	Return type

	string

	
tags

	data object’s tags

	
property unique

	Get unique attribute.

This attribute tells if Metadata has one-to-one or one-to-many
relation to collection samples.

	
update()

	Clear cache and update resource fields from the server.

	
validate_df(df)

	Validate df property.

Validates that df:

	is an instance of pandas.DataFrame

	index contains sample IDs that match some samples:

	If not matches, raise warning

	If there are samples in df but not in collection, raise warning

	If there are samples in collection but not in df, raise warning

	
version

	resource version

	
class resdk.resources.kb.Feature(resolwe, **model_data)

	Knowledge base Feature resource.

	
aliases

	Aliases

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
description

	Description

	
feature_id

	Feature ID

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
full_name

	Full name

	
id

	unique identifier of an object

	
name

	Name

	
save()

	Save resource to the server.

	
source

	Source

	
species

	Species

	
sub_type

	Feature subtype (tRNA, protein coding, rRNA, …)

	
type

	Feature type (gene, transcript, exon, …)

	
update()

	Update resource fields from the server.

	
class resdk.resources.kb.Mapping(resolwe, **model_data)

	Knowledge base Mapping resource.

	
delete(force=False)

	Delete the resource object from the server.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not trigger confirmation prompt. WARNING: Be
sure that you really know what you are doing as deleted objects
are not recoverable.

	
classmethod fetch_object(resolwe, id=None, slug=None)

	Return resource instance that is uniquely defined by identifier.

	
fields()

	Resource fields.

	
id

	unique identifier of an object

	
save()

	Save resource to the server.

	
source_db

	Source database

	
source_id

	Source feature ID

	
source_species

	Source feature species

	
target_db

	Target database

	
target_id

	Target feature ID

	
target_species

	Target feature species

	
update()

	Update resource fields from the server.

Permissions

Resources like resdk.resources.Data,
resdk.resources.Collection, resdk.resources.Sample, and
resdk.resources.Process include a permissions attribute to manage
permissions. The permissions attribute is an instance of
resdk.resources.permissions.PermissionsManager.

	
class resdk.resources.permissions.PermissionsManager(all_permissions, api_root, resolwe)

	Helper class to manage permissions of the BaseResource.

	
clear_cache()

	Clear cache.

	
copy_from(source)

	Copy permissions from some other object to self.

	
property editors

	Get users with edit permission.

	
fetch()

	Fetch permissions from server.

	
property owners

	Get users with owner permission.

	
set_group(group, perm)

	Set perm permission to group.

When assigning permissions, only the highest permission needs to
be given. Permission hierarchy is:

	none (no permissions)

	view

	edit

	share

	owner

Some examples:

collection = res.collection.get(...)
Add share, edit and view permission to BioLab:
collection.permissions.set_group('biolab', 'share')
Remove share and edit permission from BioLab:
collection.permissions.set_group('biolab', 'view')
Remove all permissions from BioLab:
collection.permissions.set_group('biolab', 'none')

	
set_public(perm)

	Set perm permission for public.

Public can only get two sorts of permissions:

	none (no permissions)

	view

Some examples:

collection = res.collection.get(...)
Add view permission to public:
collection.permissions.set_public('view')
Remove view permission from public:
collection.permissions.set_public('none')

	
set_user(user, perm)

	Set perm permission to user.

When assigning permissions, only the highest permission needs to
be given. Permission hierarchy is:

	none (no permissions)

	view

	edit

	share

	owner

Some examples:

collection = res.collection.get(...)
Add share, edit and view permission to John:
collection.permissions.set_user('john', 'share')
Remove share and edit permission from John:
collection.permissions.set_user('john', 'view')
Remove all permissions from John:
collection.permissions.set_user('john', 'none')

	
property viewers

	Get users with view permission.

Utility functions

Resource utility functions.

	
resdk.resources.utils.fill_spaces(word, desired_length)

	Fill spaces at the end until word reaches desired length.

	
resdk.resources.utils.flatten_field(field, schema, path)

	Reduce dicts of dicts to dot separated keys.

	Parameters

	
	field (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Field instance (e.g. input)

	schema (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Schema instance (e.g. input_schema)

	path (string) – Field path

	Returns

	flattened instance

	Return type

	dictionary

	
resdk.resources.utils.get_collection_id(collection)

	Return id attribute of the object if it is collection, otherwise return given value.

	
resdk.resources.utils.get_data_id(data)

	Return id attribute of the object if it is data, otherwise return given value.

	
resdk.resources.utils.get_descriptor_schema_id(dschema)

	Get descriptor schema id.

Return id attribute of the object if it is descriptor schema,
otherwise return given value.

	
resdk.resources.utils.get_process_id(process)

	Return id attribute of the object if it is process, otherwise return given value.

	
resdk.resources.utils.get_relation_id(relation)

	Return id attribute of the object if it is relation, otherwise return given value.

	
resdk.resources.utils.get_sample_id(sample)

	Return id attribute of the object if it is sample, otherwise return given value.

	
resdk.resources.utils.get_user_id(user)

	Return id attribute of the object if it is relation, otherwise return given value.

	
resdk.resources.utils.is_collection(collection)

	Return True if passed object is Collection and False otherwise.

	
resdk.resources.utils.is_data(data)

	Return True if passed object is Data and False otherwise.

	
resdk.resources.utils.is_descriptor_schema(data)

	Return True if passed object is DescriptorSchema and False otherwise.

	
resdk.resources.utils.is_group(group)

	Return True if passed object is Group and False otherwise.

	
resdk.resources.utils.is_process(process)

	Return True if passed object is Process and False otherwise.

	
resdk.resources.utils.is_relation(relation)

	Return True if passed object is Relation and False otherwise.

	
resdk.resources.utils.is_sample(sample)

	Return True if passed object is Sample and False otherwise.

	
resdk.resources.utils.is_user(user)

	Return True if passed object is User and False otherwise.

	
resdk.resources.utils.iterate_fields(fields, schema)

	Recursively iterate over all DictField sub-fields.

	Parameters

	
	fields (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Field instance (e.g. input)

	schema (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Schema instance (e.g. input_schema)

	
resdk.resources.utils.iterate_schema(fields, schema, path=None)

	Recursively iterate over all schema sub-fields.

	Parameters

	
	fields (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Field instance (e.g. input)

	schema (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Schema instance (e.g. input_schema)

	Path schema

	Field path

	Path schema

	string

	
resdk.resources.utils.parse_resolwe_datetime(dtime)

	Convert string representation of time to local datetime.datetime object.

ReSDK Tables

Helper classes for aggregating collection data in tabular format.

Table classes

	
class resdk.tables.microarray.MATables(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	A helper class to fetch collection’s microarray, qc and meta data.

This class enables fetching given collection’s data and returning it
as tables which have samples in rows and microarray / qc / metadata
in columns.

A simple example:

Get Collection object
collection = res.collection.get("collection-slug")

Fetch collection microarray and metadata
tables = MATables(collection)
meta = tables.meta
exp = tables.exp

	
__init__(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	Initialize class.

	Parameters

	
	collection – collection to use

	cache_dir – cache directory location, if not specified system specific
cache directory is used

	progress_callable – custom callable that can be used to report
progress. By default, progress is written to
stderr with tqdm

	
static clear_cache() → None [https://docs.python.org/3/library/constants.html#None]

	Remove ReSDK cache files from the default cache directory.

	
property exp: DataFrame

	Return expressions values table as a pandas DataFrame object.

	
property meta: DataFrame

	Return samples metadata table as a pandas DataFrame object.

	Returns

	table of metadata

	
property qc: DataFrame

	Return samples QC table as a pandas DataFrame object.

	Returns

	table of QC values

	
property readable_index: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get mapping from index values to readable names.

	
class resdk.tables.ml_ready.MLTables(collection, name)

	Machine-learning ready tables.

	
__init__(collection, name)

	Initialize class.

	Parameters

	collection – Collection to use

	
property exp

	Get ML ready expressions as pandas.DataFrame.

These expressions are normalized and batch effect corrected -
thus ready to be taken into ML procedures.

	
class resdk.tables.rna.RNATables(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, expression_source: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, expression_process_slug: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	A helper class to fetch collection’s expression and meta data.

This class enables fetching given collection’s data and returning it
as tables which have samples in rows and expressions/metadata in
columns.

When calling RNATables.exp,
RNATables.rc and RNATables.meta
for the first time the corresponding data gets downloaded from the
server. This data than gets cached in memory and on disc and is used
in consequent calls. If the data on the server changes the updated
version gets re-downloaded.

A simple example:

Get Collection object
collection = res.collection.get("collection-slug")

Fetch collection expressions and metadata
tables = RNATables(collection)
exp = tables.exp
rc = tables.rc
meta = tables.meta

	
__init__(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, expression_source: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, expression_process_slug: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Initialize class.

	Parameters

	
	collection – collection to use

	cache_dir – cache directory location, if not specified system specific
cache directory is used

	progress_callable – custom callable that can be used to report
progress. By default, progress is written to
stderr with tqdm

	expression_source – Only consider samples in the
collection with specified source

	expression_process_slug – Only consider samples in the
collection with specified
process slug

	
property build: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get build.

	
check_heterogeneous_collections()

	Ensure consistency among expressions.

	
static clear_cache() → None [https://docs.python.org/3/library/constants.html#None]

	Remove ReSDK cache files from the default cache directory.

	
property exp: DataFrame

	Return expressions table as a pandas DataFrame object.

Which type of expressions (TPM, CPM, FPKM, …) get returned
depends on how the data was processed. The expression type can
be checked in the returned table attribute attrs[‘exp_type’]:

exp = tables.exp
print(exp.attrs['exp_type'])

	Returns

	table of expressions

	
property meta: DataFrame

	Return samples metadata table as a pandas DataFrame object.

	Returns

	table of metadata

	
property qc: DataFrame

	Return samples QC table as a pandas DataFrame object.

	Returns

	table of QC values

	
property rc: DataFrame

	Return expression counts table as a pandas DataFrame object.

	Returns

	table of counts

	
property readable_columns: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Map of source gene ids to symbols.

This also gets fetched only once and then cached in memory and
on disc. RNATables.exp or
RNATables.rc must be called before this as the
mapping is specific to just this data. Its intended use is to
rename table column labels from gene ids to symbols.

Example of use:

exp = exp.rename(columns=tables.readable_columns)

	Returns

	dict with gene ids as keys and gene symbols as values

	
property readable_index: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get mapping from index values to readable names.

	
class resdk.tables.methylation.MethylationTables(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	A helper class to fetch collection’s methylation and meta data.

This class enables fetching given collection’s data and returning it
as tables which have samples in rows and methylation/metadata in
columns.

A simple example:

Get Collection object
collection = res.collection.get("collection-slug")

Fetch collection methylation and metadata
tables = MethylationTables(collection)
meta = tables.meta
beta = tables.beta
m_values = tables.mval

	
__init__(collection: Collection, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	Initialize class.

	Parameters

	
	collection – collection to use

	cache_dir – cache directory location, if not specified system specific
cache directory is used

	progress_callable – custom callable that can be used to report
progress. By default, progress is written to
stderr with tqdm

	
property beta: DataFrame

	Return beta values table as a pandas DataFrame object.

	
static clear_cache() → None [https://docs.python.org/3/library/constants.html#None]

	Remove ReSDK cache files from the default cache directory.

	
property meta: DataFrame

	Return samples metadata table as a pandas DataFrame object.

	Returns

	table of metadata

	
property mval: DataFrame

	Return m-values as a pandas DataFrame object.

	
property qc: DataFrame

	Return samples QC table as a pandas DataFrame object.

	Returns

	table of QC values

	
property readable_index: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get mapping from index values to readable names.

	
class resdk.tables.variant.VariantTables(collection: Collection, geneset: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, filtering: bool [https://docs.python.org/3/library/functions.html#bool] = True, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	A helper class to fetch collection’s variant and meta data.

This class enables fetching given collection’s data and returning it
as tables which have samples in rows and variants in columns.

A simple example:

Get Collection object
collection = res.collection.get("collection-slug")

tables = VariantTables(collection)
Get variant data
tables.variants
Get depth per variant or coverage for specific base
tables.depth
tables.depth_a
tables.depth_c
tables.depth_g
tables.depth_t

	
__init__(collection: Collection, geneset: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, filtering: bool [https://docs.python.org/3/library/functions.html#bool] = True, cache_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, progress_callable: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None)

	Initialize class.

	Parameters

	
	collection – Collection to use.

	geneset – Only consider mutations from this gene-set.
Can be a list of gene symbols or a valid geneset Data
object id / slug.

	filtering – Only show variants that pass QC filters.

	cache_dir – Cache directory location, if not specified
system specific cache directory is used.

	progress_callable – Custom callable that can be used to
report progress. By default, progress is written to stderr
with tqdm.

	
static clear_cache() → None [https://docs.python.org/3/library/constants.html#None]

	Remove ReSDK cache files from the default cache directory.

	
property depth: DataFrame

	Get depth table.

	
property depth_a: DataFrame

	Get depth table for adenine.

	
property depth_c: DataFrame

	Get depth table for cytosine.

	
property depth_g: DataFrame

	Get depth table for guanine.

	
property depth_t: DataFrame

	Get depth table for thymine.

	
property filter: DataFrame

	Get filter table.

Values can be:

	PASS - Variant has passed filters:

	DP : Insufficient read depth (< 10.0)

	QD: insufficient quality normalized by depth (< 2.0)

	
	FS: insufficient phred-scaled p-value using Fisher’s exact
	test to detect strand bias (> 30.0)

	SnpCluster: Variant is part of a cluster

For example, if a variant has read depth 8, GATK will mark it as DP.

	
property geneset

	Get geneset.

	
property meta: DataFrame

	Return samples metadata table as a pandas DataFrame object.

	Returns

	table of metadata

	
property qc: DataFrame

	Return samples QC table as a pandas DataFrame object.

	Returns

	table of QC values

	
property readable_index: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get mapping from index values to readable names.

	
property variants: DataFrame

	Get variants table.

There are 4 possible values:

	0 - wild-type, no variant

	1 - heterozygous mutation

	2 - homozygous mutation

	NaN - QC filters are failing - mutation status is unreliable

Exceptions

Custom ReSDK exceptions.

	
class resdk.exceptions.ValidationError

	An error while validating data.

Logging

Module contents:

	Parent logger for all modules in resdk library

	Handler STDOUT_HANDLER is “turned off” by default

	Handler configuration functions

	Override sys.excepthook to log all uncaught exceptions

Parent logger

Loggers in resdk are named by their module name. This is achieved by:

logger = logging.getLogger(__name__)

This makes it easy to locate the source of a log message.

Logging handlers

The handler STDOUT_HANDLER is created but not
automatically added to ROOT_LOGGER, which means they do not do anything.
The handlers are activated when users call logger configuration
functions like start_logging().

Handler configuration functions

As a good logging practice, the library does not register handlers by
default. The reason is that if the library is included in some
application, developers of that application will probably want to
register loggers by themself. Therefore, if a user wishes to register
the pre-defined handlers she can run:

import resdk
resdk.start_logging()

	
resdk_logger.start_logging(logging_level=logging.INFO)

	Start logging resdk with the default configuration.

	Parameters

	logging_level (int [https://docs.python.org/3/library/functions.html#int]) – logging threshold level - integer in [0-50]

	Return type

	None

Logging levels:

	logging.DEBUG(10)

	logging.INFO(20)

	logging.WARNING(30)

	logging.ERROR(40)

	logging.CRITICAL(50)

	
resdk_logger.log_to_stdout(level=None)

	Configure logging to stdout.

	Parameters

	
	is_on (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, log to standard output

	level (int [https://docs.python.org/3/library/functions.html#int]) – logging threshold level - integer in [0-50]

	Return type

	None

Log uncaught exceptions

All python exceptions are handled by function, stored in
sys.excepthook. By rewriting the default implementation, we can
modify it for our puruses - to log all uncaught exceptions.

Note#1: Modified behaviour (logging of all uncaught exceptions) applies
only when runing in non-interactive mode.

Note#2: Any exception can be caught/uncaught and it can happen in
interactive/non-interactive mode. This makes 4 different scenarios.
The sys.excepthook modification takes care of uncaught exceptions in
non-interactive mode. In interactive mode, user is notified directly
if exception is raised. If exception is caught and not reraised, it
should be logged somehow, since it can provide valuable information
for developer when debugging. Therefore, we should use the following
convention for logging in resdk: “Exceptions are explicitly logged
only when they are caught and not re-raised.”

Contributing

Installing prerequisites

Make sure you have Python [https://www.python.org/] 3.7+ installed on your system. If you don’t
have it yet, follow these instructions [https://docs.python.org/3/using/index.html].

Preparing environment

Fork [https://help.github.com/articles/fork-a-repo] the main
Resolwe SDK for Python git repository [https://github.com/genialis/resolwe-bio-py].

If you don’t have Git installed on your system, follow these
instructions [http://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

Clone your fork (replace <username> with your GitHub account name) and
change directory:

git clone https://github.com/<username>/resolwe-bio-py.git
cd resolwe-bio-py

Prepare Resolwe SDK for Python for development:

pip install -e .[docs,package,test]

Note

We recommend using venv [http://docs.python.org/3/library/venv.html]
to create an isolated Python environment.

Running tests

Run unit tests:

py.test

Coverage report

To see the tests’ code coverage, use:

py.test --cov=resdk

To generate an HTML file showing the tests’ code coverage, use:

py.test --cov=resdk --cov-report=html

Building documentation

python setup.py build_sphinx

Preparing release

Checkout the latest code and create a release branch:

git checkout master
git pull
git checkout -b release-<new-version>

Replace the Unreleased heading in docs/CHANGELOG.rst with the new
version, followed by release’s date (e.g. 13.2.0 - 2018-10-23).

Commit changes to git:

git commit -a -m "Prepare release <new-version>"

Push changes to your fork and open a pull request:

git push --set-upstream <resdk-fork-name> release-<new-version>

Wait for the tests to pass and the pull request to be approved. Merge the code
to master:

git checkout master
git merge --ff-only release-<new-version>
git push <resdk-upstream-name> master <new-version>

Tag the new release from the latest commit:

git checkout master
git tag -sm "Version <new-version>" <new-version>

Push the tag to the main ReSDK’s git repository:

git push <resdk-upstream-name> master <new-version>

The tagged code will we be released to PyPI automatically.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 resdk	

 	
 	
 resdk.exceptions	

 	
 	
 resdk.query	

 	
 	
 resdk.resdk_logger	

 	
 	
 resdk.resolwe	

 	
 	
 resdk.resources	

 	
 	
 resdk.resources.kb	

 	
 	
 resdk.resources.utils	

 	
 	
 resdk.tables	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (resdk.tables.methylation.MethylationTables method)

 	(resdk.tables.microarray.MATables method)

 	(resdk.tables.ml_ready.MLTables method)

 	(resdk.tables.rna.RNATables method)

 	(resdk.tables.variant.VariantTables method)

A

 	
 	add_sample() (resdk.resources.Relation method)

 	add_users() (resdk.resources.Group method)

 	aliases (resdk.resources.kb.Feature attribute)

 	all() (resdk.ResolweQuery method)

 	
 	AnnotationField (class in resdk.resources)

 	AnnotationGroup (class in resdk.resources)

 	annotations (resdk.resources.Sample property)

 	AnnotationValue (class in resdk.resources)

 	assign_to_billing_account() (resdk.resources.Collection method)

B

 	
 	background (resdk.resources.Sample property)

 	BaseCollection (class in resdk.resources.collection)

 	BaseResolweResource (class in resdk.resources.base)

 	
 	BaseResource (class in resdk.resources.base)

 	beta (resdk.tables.methylation.MethylationTables property)

 	build (resdk.tables.rna.RNATables property)

C

 	
 	category (resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	check_heterogeneous_collections() (resdk.tables.rna.RNATables method)

 	checksum (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	children (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	clear_cache() (resdk.ResolweQuery method)

 	(resdk.resources.permissions.PermissionsManager method)

 	(resdk.tables.methylation.MethylationTables static method)

 	(resdk.tables.microarray.MATables static method)

 	(resdk.tables.rna.RNATables static method)

 	(resdk.tables.variant.VariantTables static method)

 	Collection (class in resdk.resources)

 	collection (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	contributor (resdk.resources.base.BaseResolweResource property)

 	(resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Data property)

 	(resdk.resources.DescriptorSchema property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Process property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	
 	copy_from() (resdk.resources.permissions.PermissionsManager method)

 	count() (resdk.ResolweQuery method)

 	create() (resdk.ResolweQuery method)

 	create_background_relation() (resdk.resources.Collection method)

 	create_compare_relation() (resdk.resources.Collection method)

 	create_group_relation() (resdk.resources.Collection method)

 	create_series_relation() (resdk.resources.Collection method)

 	created (resdk.resources.base.BaseResolweResource property)

 	(resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Data property)

 	(resdk.resources.DescriptorSchema property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Process property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	current_user_permissions (resdk.resources.base.BaseResolweResource attribute)

 	(resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

D

 	
 	Data (class in resdk.resources)

 	data (resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Sample property)

 	data_name (resdk.resources.Process attribute)

 	data_types() (resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Sample method)

 	data_usage() (resdk.Resolwe method)

 	delete() (resdk.ResolweQuery method)

 	(resdk.resources.AnnotationField method)

 	(resdk.resources.AnnotationGroup method)

 	(resdk.resources.AnnotationValue method)

 	(resdk.resources.base.BaseResolweResource method)

 	(resdk.resources.base.BaseResource method)

 	(resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.DescriptorSchema method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Group method)

 	(resdk.resources.kb.Feature method)

 	(resdk.resources.kb.Mapping method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Process method)

 	(resdk.resources.Relation method)

 	(resdk.resources.Sample method)

 	(resdk.resources.User method)

 	depth (resdk.tables.variant.VariantTables property)

 	depth_a (resdk.tables.variant.VariantTables property)

 	depth_c (resdk.tables.variant.VariantTables property)

 	depth_g (resdk.tables.variant.VariantTables property)

 	depth_t (resdk.tables.variant.VariantTables property)

 	description (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.kb.Feature attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Sample attribute)

 	descriptor (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

 	
 	descriptor_dirty (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

 	descriptor_schema (resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	DescriptorSchema (class in resdk.resources)

 	df (resdk.resources.Metadata property)

 	df_bytes (resdk.resources.Metadata property)

 	download() (resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Sample method)

 	duplicate() (resdk.resources.Collection method)

 	(resdk.resources.Data method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Sample method)

 	duplicated (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Sample attribute)

E

 	
 	editors (resdk.resources.permissions.PermissionsManager property)

 	entity_always_create (resdk.resources.Process attribute)

 	entity_descriptor_schema (resdk.resources.Process attribute)

 	entity_input (resdk.resources.Process attribute)

 	
 	entity_type (resdk.resources.Process attribute)

 	exp (resdk.tables.microarray.MATables property)

 	(resdk.tables.ml_ready.MLTables property)

 	(resdk.tables.rna.RNATables property)

F

 	
 	Feature (class in resdk.resources.kb)

 	feature_id (resdk.resources.kb.Feature attribute)

 	fetch() (resdk.resources.permissions.PermissionsManager method)

 	fetch_object() (resdk.resources.AnnotationField class method)

 	(resdk.resources.AnnotationGroup class method)

 	(resdk.resources.AnnotationValue class method)

 	(resdk.resources.base.BaseResolweResource class method)

 	(resdk.resources.base.BaseResource class method)

 	(resdk.resources.Collection class method)

 	(resdk.resources.collection.BaseCollection class method)

 	(resdk.resources.Data class method)

 	(resdk.resources.DescriptorSchema class method)

 	(resdk.resources.Geneset class method)

 	(resdk.resources.Group class method)

 	(resdk.resources.kb.Feature class method)

 	(resdk.resources.kb.Mapping class method)

 	(resdk.resources.Metadata class method)

 	(resdk.resources.Process class method)

 	(resdk.resources.Relation class method)

 	(resdk.resources.Sample class method)

 	(resdk.resources.User class method)

 	field (resdk.resources.AnnotationValue property)

 	fields() (resdk.resources.AnnotationField method)

 	(resdk.resources.AnnotationGroup method)

 	(resdk.resources.AnnotationValue method)

 	(resdk.resources.base.BaseResolweResource method)

 	(resdk.resources.base.BaseResource method)

 	(resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.DescriptorSchema method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Group method)

 	(resdk.resources.kb.Feature method)

 	(resdk.resources.kb.Mapping method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Process method)

 	(resdk.resources.Relation method)

 	(resdk.resources.Sample method)

 	(resdk.resources.User method)

 	
 	files() (resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Sample method)

 	fill_spaces() (in module resdk.resources.utils)

 	filter (resdk.tables.variant.VariantTables property)

 	filter() (resdk.ResolweQuery method)

 	finished (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	first_name (resdk.resources.User attribute)

 	flatten_field() (in module resdk.resources.utils)

 	full_name (resdk.resources.kb.Feature attribute)

G

 	
 	genes (resdk.resources.Geneset property)

 	Geneset (class in resdk.resources)

 	geneset (resdk.tables.variant.VariantTables property)

 	get() (resdk.ResolweQuery method)

 	get_annotation() (resdk.resources.Sample method)

 	get_annotations() (resdk.resources.Sample method)

 	get_bam() (resdk.resources.Sample method)

 	get_collection_id() (in module resdk.resources.utils)

 	get_cuffquant() (resdk.resources.Sample method)

 	get_data_id() (in module resdk.resources.utils)

 	get_descriptor_schema_id() (in module resdk.resources.utils)

 	get_df() (resdk.resources.Metadata method)

 	
 	get_expression() (resdk.resources.Sample method)

 	get_macs() (resdk.resources.Sample method)

 	get_name() (resdk.resources.User method)

 	get_or_run() (resdk.Resolwe method)

 	get_primary_bam() (resdk.resources.Sample method)

 	get_process_id() (in module resdk.resources.utils)

 	get_query_by_resource() (resdk.Resolwe method)

 	get_reads() (resdk.resources.Sample method)

 	get_relation_id() (in module resdk.resources.utils)

 	get_sample_id() (in module resdk.resources.utils)

 	get_user_id() (in module resdk.resources.utils)

 	Group (class in resdk.resources)

 	group (resdk.resources.AnnotationField property)

I

 	
 	id (resdk.resources.AnnotationField attribute)

 	(resdk.resources.AnnotationGroup attribute)

 	(resdk.resources.AnnotationValue attribute)

 	(resdk.resources.base.BaseResolweResource attribute)

 	(resdk.resources.base.BaseResource attribute)

 	(resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Group attribute)

 	(resdk.resources.kb.Feature attribute)

 	(resdk.resources.kb.Mapping attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

 	(resdk.resources.User attribute)

 	
 	input (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	input_schema (resdk.resources.Process attribute)

 	is_active (resdk.resources.Process attribute)

 	is_background (resdk.resources.Sample property)

 	is_collection() (in module resdk.resources.utils)

 	is_data() (in module resdk.resources.utils)

 	is_descriptor_schema() (in module resdk.resources.utils)

 	is_group() (in module resdk.resources.utils)

 	is_process() (in module resdk.resources.utils)

 	is_relation() (in module resdk.resources.utils)

 	is_sample() (in module resdk.resources.utils)

 	is_user() (in module resdk.resources.utils)

 	iterate() (resdk.ResolweQuery method)

 	iterate_fields() (in module resdk.resources.utils)

 	iterate_schema() (in module resdk.resources.utils)

L

 	
 	log_to_stdout() (resdk.resdk_logger method)

 	
 	login() (resdk.Resolwe method)

M

 	
 	Mapping (class in resdk.resources.kb)

 	MATables (class in resdk.tables.microarray)

 	meta (resdk.tables.methylation.MethylationTables property)

 	(resdk.tables.microarray.MATables property)

 	(resdk.tables.rna.RNATables property)

 	(resdk.tables.variant.VariantTables property)

 	Metadata (class in resdk.resources)

 	MethylationTables (class in resdk.tables.methylation)

 	MLTables (class in resdk.tables.ml_ready)

 	modified (resdk.resources.base.BaseResolweResource property)

 	(resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Data property)

 	(resdk.resources.DescriptorSchema property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Process property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	
 	
 module

 	resdk.exceptions

 	resdk.query

 	resdk.resdk_logger

 	resdk.resolwe

 	resdk.resources

 	resdk.resources.kb

 	resdk.resources.utils

 	resdk.tables

 	mval (resdk.tables.methylation.MethylationTables property)

N

 	
 	name (resdk.resources.base.BaseResolweResource attribute)

 	(resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Group attribute)

 	(resdk.resources.kb.Feature attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

O

 	
 	output (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	
 	output_schema (resdk.resources.Process attribute)

 	owners (resdk.resources.permissions.PermissionsManager property)

P

 	
 	parents (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	parse_resolwe_datetime() (in module resdk.resources.utils)

 	partitions (resdk.resources.Relation attribute)

 	permissions (resdk.resources.base.BaseResolweResource property)

 	(resdk.resources.Collection property)

 	(resdk.resources.collection.BaseCollection property)

 	(resdk.resources.Data property)

 	(resdk.resources.DescriptorSchema property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	(resdk.resources.Process property)

 	(resdk.resources.Relation property)

 	(resdk.resources.Sample property)

 	PermissionsManager (class in resdk.resources.permissions)

 	persistence (resdk.resources.Process attribute)

 	print_inputs() (resdk.resources.Process method)

 	priority (resdk.resources.Process attribute)

 	Process (class in resdk.resources)

 	process (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	
 	process_cores (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_error (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_info (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_memory (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_progress (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_rc (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_resources (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	process_warning (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

Q

 	
 	qc (resdk.tables.methylation.MethylationTables property)

 	(resdk.tables.microarray.MATables property)

 	(resdk.tables.rna.RNATables property)

 	(resdk.tables.variant.VariantTables property)

R

 	
 	rc (resdk.tables.rna.RNATables property)

 	readable_columns (resdk.tables.rna.RNATables property)

 	readable_index (resdk.tables.methylation.MethylationTables property)

 	(resdk.tables.microarray.MATables property)

 	(resdk.tables.rna.RNATables property)

 	(resdk.tables.variant.VariantTables property)

 	Relation (class in resdk.resources)

 	relations (resdk.resources.Collection property)

 	(resdk.resources.Sample property)

 	remove_samples() (resdk.resources.Relation method)

 	remove_users() (resdk.resources.Group method)

 	requirements (resdk.resources.Process attribute)

 	
 resdk.exceptions

 	module

 	
 resdk.query

 	module

 	
 	
 resdk.resdk_logger

 	module

 	
 resdk.resolwe

 	module

 	
 resdk.resources

 	module

 	
 resdk.resources.kb

 	module

 	
 resdk.resources.utils

 	module

 	
 resdk.tables

 	module

 	Resolwe (class in resdk)

 	ResolweQuery (class in resdk)

 	RNATables (class in resdk.tables.rna)

 	run (resdk.resources.Process attribute)

 	run() (resdk.Resolwe method)

S

 	
 	Sample (class in resdk.resources)

 	sample (resdk.resources.AnnotationValue property)

 	(resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	sample_id (resdk.resources.AnnotationValue attribute)

 	samples (resdk.resources.Collection property)

 	(resdk.resources.Relation property)

 	save() (resdk.resources.AnnotationField method)

 	(resdk.resources.AnnotationGroup method)

 	(resdk.resources.AnnotationValue method)

 	(resdk.resources.base.BaseResolweResource method)

 	(resdk.resources.base.BaseResource method)

 	(resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.DescriptorSchema method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Group method)

 	(resdk.resources.kb.Feature method)

 	(resdk.resources.kb.Mapping method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Process method)

 	(resdk.resources.Relation method)

 	(resdk.resources.Sample method)

 	(resdk.resources.User method)

 	scheduled (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	scheduling_class (resdk.resources.Process attribute)

 	schema (resdk.resources.DescriptorSchema attribute)

 	search() (resdk.ResolweQuery method)

 	set_annotation() (resdk.resources.Sample method)

 	set_annotations() (resdk.resources.Sample method)

 	set_df() (resdk.resources.Metadata method)

 	set_group() (resdk.resources.permissions.PermissionsManager method)

 	set_index() (resdk.resources.Metadata method)

 	
 	set_operator() (resdk.resources.Geneset method)

 	set_public() (resdk.resources.permissions.PermissionsManager method)

 	set_user() (resdk.resources.permissions.PermissionsManager method)

 	settings (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Sample attribute)

 	size (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	slug (resdk.resources.base.BaseResolweResource attribute)

 	(resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

 	source (resdk.resources.Geneset property)

 	(resdk.resources.kb.Feature attribute)

 	source_db (resdk.resources.kb.Mapping attribute)

 	source_id (resdk.resources.kb.Mapping attribute)

 	source_species (resdk.resources.kb.Mapping attribute)

 	species (resdk.resources.Geneset property)

 	(resdk.resources.kb.Feature attribute)

 	start_logging() (resdk.resdk_logger method)

 	started (resdk.resources.Data property)

 	(resdk.resources.Geneset property)

 	(resdk.resources.Metadata property)

 	status (resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	stdout() (resdk.resources.Data method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Metadata method)

 	sub_type (resdk.resources.kb.Feature attribute)

T

 	
 	tags (resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Sample attribute)

 	
 	target_db (resdk.resources.kb.Mapping attribute)

 	target_id (resdk.resources.kb.Mapping attribute)

 	target_species (resdk.resources.kb.Mapping attribute)

 	type (resdk.resources.kb.Feature attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

U

 	
 	unique (resdk.resources.Metadata property)

 	unit (resdk.resources.Relation attribute)

 	update() (resdk.resources.AnnotationField method)

 	(resdk.resources.AnnotationGroup method)

 	(resdk.resources.AnnotationValue method)

 	(resdk.resources.base.BaseResolweResource method)

 	(resdk.resources.base.BaseResource method)

 	(resdk.resources.Collection method)

 	(resdk.resources.collection.BaseCollection method)

 	(resdk.resources.Data method)

 	(resdk.resources.DescriptorSchema method)

 	(resdk.resources.Geneset method)

 	(resdk.resources.Group method)

 	(resdk.resources.kb.Feature method)

 	(resdk.resources.kb.Mapping method)

 	(resdk.resources.Metadata method)

 	(resdk.resources.Process method)

 	(resdk.resources.Relation method)

 	(resdk.resources.Sample method)

 	(resdk.resources.User method)

 	
 	User (class in resdk.resources)

 	users (resdk.resources.Group property)

V

 	
 	validate_df() (resdk.resources.Metadata method)

 	ValidationError (class in resdk.exceptions)

 	variants (resdk.tables.variant.VariantTables property)

 	VariantTables (class in resdk.tables.variant)

 	version (resdk.resources.base.BaseResolweResource attribute)

 	(resdk.resources.Collection attribute)

 	(resdk.resources.collection.BaseCollection attribute)

 	(resdk.resources.Data attribute)

 	(resdk.resources.DescriptorSchema attribute)

 	(resdk.resources.Geneset attribute)

 	(resdk.resources.Metadata attribute)

 	(resdk.resources.Process attribute)

 	(resdk.resources.Relation attribute)

 	(resdk.resources.Sample attribute)

 	
 	version_check() (resdk.Resolwe method)

 	viewers (resdk.resources.permissions.PermissionsManager property)

 _images/resolwe_resdk.jpg
0

resdk installed

Resolve server #1 > D Resolve server #2
wiww.resolwe.com wiw.resolwe2.com

resdk installed

_images/data-hierarchy-diagram.png
SAMPLE 2 W M—> expression
SAMPLE 3 W W expression

differential expression

COLLECTION genome annotations

[data object B sample B collection

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Resolwe SDK for Python

 		
 Getting started

 		
 Installation

 		
 Registration

 		
 Connect to Genialis Server

 		
 Query data

 		
 Run alignment

 		
 Tutorials

 		
 Genialis Server basics

 		
 Genialis Server and ReSDK

 		
 Data and Process

 		
 Samples and Collections

 		
 Query, inspect and download data

 		
 Login

 		
 Query resources

 		
 Inspect resources

 		
 Download data

 		
 Create, modify and organize data

 		
 Organize resources

 		
 Upload files

 		
 Modify data

 		
 Annotate Samples

 		
 Run analyses

 		
 Run workflows

 		
 Solving problems

 		
 Topical documentation

 		
 Knowledge base

 		
 Feature

 		
 Mapping

 		
 ReSDK Tables

 		
 RNATables

 		
 MethylationTables

 		
 MATables

 		
 VariantTables

 		
 Genesets

 		
 Metadata

 		
 SDK Reference

 		
 Resolwe

 		
 Resolwe

 		
 Resolwe Query

 		
 ResolweQuery

 		
 Resources

 		
 Resource classes

 		
 Permissions

 		
 Utility functions

 		
 ReSDK Tables

 		
 Table classes

 		
 Exceptions

 		
 ValidationError

 		
 Logging

 		
 Parent logger

 		
 Logging handlers

 		
 Handler configuration functions

 		
 Log uncaught exceptions

 		
 Contributing

 		
 Installing prerequisites

 		
 Preparing environment

 		
 Running tests

 		
 Coverage report

 		
 Building documentation

 		
 Preparing release

_static/plus.png

